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ABSTRACT

We shall prove here that Bowen’s bounded codes lead to a cocycle-coboundary
equation which can be exploited in various ways: through central limit
theorems, through the related information variance or through a certain group
invariant. Another result which emerges is that it is impossible to boundedly
code two Markov automorphisms when one is of maximal type and the other is
not. The functions which appear in the above cited cocycle-coboundary
equation may belong to various L? spaces. We devote a section to this problem.
Finally we show that the information cocycle associated with small smooth
partitions of a C*> Anosov diffeomorphism preserving a smooth probability is, in
a sense, canonical.

0. Introduction

In [1] Bowen introduced the idea of bounded codes between finite partitions
and between two measure preserving transformations (or stationary finite state
stochastic processes.) Using this concept he was able to prove that small smooth
partitions of C* Anosov diffeomorphisms (preserving a smooth probability) are
weak-Bernoulli. He was also able to show that certain Bernoulli automorphisms
with the same entropy cannot boundedly code each other. (To do this the central
limit theorem (or rather the variance of the central limiting distribution) was
used as an invariant.) A similar idea was used in [3] by Fellgett and the present
author to show that various measure preserving transformations are not
“regularly isomorphic”. The principal aid to the results of [3] was a cocycle-
coboundary equation.

We shall prove here that bcunded codes also lead to the same cocyle-
coboundary equation which can be exploited in various ways: through central
limit theorems, through the closely related information variance or through a
certain group invariant. Another result which emerges is that it is impossible to
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boundedly code two Markov automorphisms when one is of ‘““‘maximal type’’ and
the other is not.

In the cocycle-coboundary equation it is of some importance to know to which
L? spaces the various functions occurring belong. We devote a section to this
problem. Finally we take up a result of Bowen’s and show that small smooth
partitions (for C* Anosov diffeomorphisms with a smooth probability) lead to
canonical information cocyles in the sense that any two differ by a coboundary
(of a function which lies in L* for all 1 =p <),

1. Bounded and ¢-bounded codes

Throughout (X, 3, m) will denote a (Lebesgue) probability space. The dis-
tance between two finite ordered partitions with the same number of elements is
given by

k

do(e, B)= 2, m(AAB), a=Ay A, B=By B

i=1
If « is a finite or countable partition we write @ for the o-algebra generated by
a. The (unsymmetric) distance between a finite partition a and a sub-o-algebra
€ is defined as

d(a, €)= inf{dy(e, B): B C%, a, B given any order}.

1f {A;}, {B;,} i €I are subsets of «, 8 then

m( U AA U Bi)=2 mA)+ S m(Bi)—Zm( UAn U Bi)

iel 13 i€r iel iel ier
= m(A)+ D, m(B)-22 m(A NB)
i€l iel iel

= m(AAB).

iel
From this it is easy to see that
d(a, €)=sup{d(a’,€):a' Cd}.
Quite generally, for o-algebras o, € contained in B we define
d(d, €)=sup{d(a,€): a CA}
= i[ég ;25 do(a, B)

If of,, sf,, o, are three sub-o-algebras then we have the following triangle
inequality:
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d(sty, o) = d (b, o)+ d(sha, o5).

To see this let a,, a,, as be finite ordered partitions with the same number of
elements, in &,, o, o, respectively. The following inequalities are proved
sequentially:

do(ar, @:) = do(a, az) + dofa, @),
d(a, ) = do(a,, @)+ d(as, o) = do(ar, a2) + d (s, 1),
d(a, o) = d(a, o)+ d (s, o),
d(sty, b:) = d(d,, o) + d(sta, o).

We note that
d(4,6)=0ifandonlyif 4 C¥.

Together with the triangle inequality this implies
d(sd,, ;) = d(sA,, sd3) when of, C s,

d(st,, 3) = d(sd,, o) when s, C A,

If d.1 4 (e oACeAC--- and U,o, generates sf) then
d(4,, %) d(A,%). To see this,suppose d < d(, €);then there exists a C A
such that for all B8 C€ (with the same number of elements as a) d < do(a, B).
Given d’ >0 we can choose n large enough so that there will exist a’' C o, with
do(a,a'y< d’ and then

do(a’, B) = dola, B)— do(e, a')>d — d' forall B C%.

Hence d(A,, €)= d - d’, and lim,_..d (A, €)= d — d’'. Since d’ is arbitrary we
have lim,_.d(4,, €)= d(4, €). The reverse inequality is obvious.
If v is a finite partition with y C€ then

d(A vy, €)=supld(e,€):aCdAv 7y}
=sup{d(a vy, €) aCod}

= sup{i%fdo(a vy, B)a Cd] (carda v y = card B)
ésup{igfdo(a vy,Bvy)a C&i} (card a = card B)

= sup[igfdo(a,ﬁ): a C&ﬁ}

= d(, %)
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and obviously d(f, €)= d(A v ¥, €). Hence d(oA, €)= d(« v ¥, €). By taking
limits for a sequence ¥y, T € we have

d(s4 v 6, €)= d(sL, €).

Let T be an automorphism (invertible measure preserving transformation) of
(X, B,m). If a,B are two finite partitions then 8 e-boundedly codes a, with
respect to T, if there exists k such that d(a§ B :*)=¢ foralln =0,1,---. Here
we use the notation B = V!._,T™'B ; we shall also write 8~ (more correctly f7)
for V7o T™'B and Br(B:) for Vi . T™.

If B e-boundedly codes o then

d(as, T"ﬁ‘)=d<a3, Y, T"‘B)és forn=0,1, -
i=—k
and hence d{a", T*B )= ¢ (for some k).

According to Bowen [1], B boundedly codes a if for every ¢ >0, B &-
boundedly codes a.

If a is a finite partition and € is a sub-o-algebra then

I |€)= = 3 xalogm(A | €)

and more generally if &/ is another sub-o-algebra the information of A with
respect to (or given) € is defined unambiguously (ae.) as I(f €)=
lim,_.I(a, | €) when &, { . The entropy of & with respect to € is
H(A €)= [I(A  €)dm. When € is the trivial o-algebra & consisting of sets
of measure zero and one we write I(«  N)=I1(A), H(A N)= H(A).

If « is a finite partition

Ir(@)=I(a)=I(a|Ta)=I(a”| T 'a")

is called the information cocycle of a or of a~. (More generally if & is a
sub-co-algebra with T 'of Cof then Ir ()= I(f , T ') is the information
cocycle of A.)

The entropy of T with respect to a finite partition a is defined as h(T,a) =
lim,.(1/n) - H(ags)= [ Ir (a)dm.

The entropy of T is h(T) = sup.h (T, &), where the supremum is taken over all
finite partitions a. If a is a finite generator (i.e. « is finite and d&r = @) then
h(T)=h(T, a).

We shall assume familiarity with the basic properties of information and
entropy which may be found in [10]. The basic identity which will be used
frequently is
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I(A v b, | €)= I1(A,| €)+ (A, € v A,).

2. The information cocycle

Lemma 1. If6 D of are sub-o-algebras such that d(6, ) <3 then I(€ | o) is
finite on a set of positive measure. More precisely if n satisfies d (€, 4)/(1 — e ") <}
then

m {x: 1(% fd)>n}§d(<6,&¢)<l+l_le_,, )

Proor. Let d(%,s)/(1—e ")<}iandlet BCE.

{x:1(8|)>n}= U BN{-logm(B | A)>n}

UBN{mB|g)<e™}
Beg

N

U AN{m@B |d)<e™}

UU B ~A)N{x:m(B|d)<e™}
where @ = {A,} is chosen (and ordered) (a« C &f) so that =, m (A AB;) = d(%, #).
The latter union has measure at most Z,m (B, ~ A;) = d(¥, &) whereas
A N{x:m(B; ]&4)<e"‘}= AN {x:E(xs, ~ xa | ) +1<e™"}

CAN{x:E(xs —xa||A)>1-e"}.

Hence
mA,-ﬂ{x:m(B,-]&f)<e"'}§1_1e,,,fE()(B,.M,]&f)dm
and
m U A;N{x:m(B, J&d)<e‘" él—e‘” 2 m(BiAAi)éélﬁ%—:-d;)<%.

We conclude that

m{x:I(B[ﬂ)>n}§d(‘6,&¢)<l+l_1e_").

Now let B, C% be a sequence of finite partitions with B. 1 % then
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m{x: (% ]&i)>n}§d(f€,&¢)<1+l_le_n)<1.

A real valued function of the form fT — f is called a coboundary (with respect
to T); fT — f is the coboundary of the function f. Two functions which differ by a
coboundary are said to be cohomologous.

THEOREM 1." Let T be an ergodic automorphism of (X, B, m). If a, B are finite
partitions such that B ¢-boundedly codes a for some 0=¢ <5 then I(a /B7) is
finite a.e. and I (a v B), I+ (B) are cohomologous.

The elements of the partition B~ consist (mod 0) of countable unions of elements
ofa " vB .

Proor. The last statement means that after the deletion of a suitable set of
measure zero the description is valid with no qualification; the statement follows
from the finiteness a.e. of I{(a /B7)=I(a” v B7/B") (cf. [10]).

We have seen that d(a”,T*B7)=e¢ for some k=0 and hence
d(a v TB7,T*B)=<¢. From Lemma 1, I(a” v 87/T*B") is finite on a set of
positive measure.

We note that

Ha /B)=I(T " a /B )+ I(a* /T *a" vB)

and since the latter function is integrable and I(T *a /87 )=I(a /T*B ) T* =
I{(a” v B7/T*B )o T* wesee that I(a” ’ B7) is finite on a set of positive measure.

Ia vp [T 'B)=I@|T'B)+I(a|B)
=I(a vT'a vB |T'B)
=[(T'a |T'B)+I(a vB |T'a vT'B)
=I(a [B)eT+IHavB|T (a vB)).

IB|T'B)and (e vB|T 'a vT'B)are integrable (in fact they belong to
L?(X)for every 1 = p <, as we shall see) and therefore I(a~ ] B7)is finite on a
T invariant set of positive measure. Since T is ergodic, I{a~ ] B7) is finite a.e.
Hence

IB|T'B)~I@vp|T e vTB)=I(a"|B)T~I(a [B)
i.e. Ir(B), Ir (@ v B) are cohomologous.

" The author has subsequently discovered that here and in the remainder of the paper the upper
bound ; may be replaced by 2.



Vol. 29, 1978 £-BOUNDED CODES 211

Cororrary. If Tisergodic and if o, B € -boundedly code each other (for some
0 = ¢ <3) then their information cocycles are cohomologous.

3. Central limits and other invariants

We now show that the central limiting distribution of
1 -
Fn(a)=w(lr(a)+ oo+ Ir(@)e T = nh(T, a)),

if it exists, is independent of « for all those a which £-boundedly code each
other (0= ¢ <3).
The corresponding statement for

Gn(a)=71;(1(a")— nh(T, a))

was proved by Bowen [1] for partiticns which boundedly code each other. We
include a proof of Bowen’s result also.
First note that if a, 8 e-boundedly code each other where 0 = ¢ <5 then

I(a)+ -+ I (@) T = (Ir (B)+ - + I (B)e T )= foT" - f

for some finite valued f and (fT" — f)/6.— 0 in measure whenever 6, — .
Hence

lim = Z Ir(a)° T' = lim - Z Ir(B) T

n—x

and [ I+ (a)dm = [ I (B)dm. In other words h(T,a)= h(T, B).

It is now clear that F,(a)— F.(B)=(fT" —f)/\/n which tends to zero in
measure. This is enough to ensure that m {x: F,(a) >t} converges for all ¢ if and
only if m {x: F.(B) >t} converges for all ¢. The limiting function will necessarily
be the same.

As for Bowen’s result (when «, 8 ¢ -boundedly code each other for all € > 0),
let 0<e <%, then

" — n+k
hmm{x Hed)— I(Bs >t}=]imm{ J—%AL)>1‘}
n—x n n—» n

{x: ILaSv@ﬁ%— I(@CI")>t}

=limm

n—»

—hmm{ V—I(ao "*“)>t}

—llm8(1+1—1*7—>

n—x
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Since £ can be chosen arbitrarily small

hmm{ Xas nI ">t}=0.

n—x

Interchanging a and B we see that (I(af)~ I(B4))/V rn —0 in measure. This is
enough to show that m{x: G,(a)>1t} converges for all ¢ if and only if
m{x: G.(B)>t} converges for all + and that the limiting function will be the
same.

In many cases the limiting distribution of F,(«) is the same as the limiting
distribution of G.(a). In fact the difference between F,(a) and G.(a) is

(n+l) -

V—(I(a(.) I(as| T™

or
fim e [0y~ k] TP ).
On cylinders (xy, - * -, x..«) the quantity inside the square brackets is
~log (man, S, X )m (x,.ﬂ, - xmﬂ))
m(xU,' * Xy xn+k+])
When m (xo, =+, Xa )M (Xnv1,* * *y Xnewt)/M(Xoy * * *, Xy * * *, Xpsx41) 1S bounded from

above and below, as in the case of finite state Markov chains, for example, it is
clear that F,(a)— G.(a) will converge to zero in measure.

In any case it is clear that central limiting distributions are invariants of the
relationships implied by €-bounded codes (0 = ¢ <}) and bounded codes. In the
most important cases central limiting distributions are Gaussian so that the only
invariant to be extracted is the variance. In many cases (cf. [4]) this will be

o(T,a)= liﬂ%f (Ir(a)+ - +Ir(@)°T"" = nh(T, a)Y'dm

which was introduced in [3] as the information variance. (See [8] for a
computation of this quantity when T is a finite state Markov chain and « is the
canonical partition.)

Fellgett and the author showed that the Meshalkin examples [5] of Bernoulli
automorphisms based on (3,3,%,1) and (4,44 4,§) were not “regularly isomor-
phic”’; Bowen proved that they do not boundedly code each other. a*(T, a) was
(essentially) the invariant used in both cases.

Another invariant of the relation I (a) = I (B) + fT — f is the group (cf. [7])
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AT, a)={(a,b)ER X R: e’ )= FoT|F

for some measurable F: X > K ={z:|z|=1}}.

In other words if a, B £-boundedly code each other (0= ¢ <}) then A(T,a) =
A(T,B). A(T,a) is readily computable when T is a finite state Markov
automorphism and o is the canonical (state) partition, since functions F
appearing in the definition of A(T, ) are necessarily functions of one variable,
i.e. F(x)= F(x,), where x, is the zero co-ordinate of x.

Two automorphisms T, T> with preferred partitions a,, a, such that «,, a, are
generators (for T, T, respectively) are said to be €-bounded (bounded) equiva-
lent or isomorphic if there is an isomorphism ¢ (¢T, = T.¢) such that o), ¢ 'a;
e-boundedly (boundedly) code each other.

Clearly these relationships are particularly relevant to finite state stationary
processes. Again using the A invariant, it is easy to show that the Meshalkin
examples are not ¢-bounded equivalent (0 = ¢ <3). Implicitly the work of [7]
shows that no two of the Markov automorphisms

pq> (pq> (qp) £

<pq Ngp ) \pg) @79

are ¢-bounded equivalent (0 =g <;). (The invariant o*(T, @) is not sharp
enough to distinguish these.)

THEOREM 2. Let T,, T» be Markov automorphisms (based on irreducible finite
stochastic matrices) with T, of ‘“‘maximal type”. If T\, T, are ¢-bounded
equivalent (0= ¢ <3) then T, is of maximal type. More generally, if T, is only
assumed to be an automorphism whose information cocycle is cohomologous to a
constant, then T, is of maximal type.

Proor. Let T be defined by the stochastic matrix P ={P(i,j)}. T, is of

maximal type means that its stochastic matrix has the form
B AT

where B is the maximum eigenvalue of a 0-1 irreducible matrix 7 and
27 A = B

In this case it is easy to see that Ir, is cohomologous to the constant log 8.
More generally, supposing I, is cohomologous to log 8 and T, T: £-boundedly
code each other (0=¢ <3), then I, is cohomologous to logB. But Iy, is
cohomologous to — log P(x,, x:) and therefore —log P(xs, x:)=logB + fT:—f
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for some finite valued f. Since — log P(x,, x,) — log B8 is a function of the zero and
first co-ordinates only it follows (cf, [7]) that ¢>™ is a function of the zero
co-ordinate only for each real r. Hence f is a function of the zero co-ordinate
only, i.e. f(x)= f(x,). Consequently p(i,j)= (e "/Be ")a(i,]) where

1 when p(i,j)>0,
o(i.j)=
0 when p(i,j)=0.

We see that p has the required form for T, to be of maximal type since B must
be the maximal eigenvalue of the matrix o.

CoroLLARY. Natural extensions of *“B-transformations™ are ¢ -bounded equi-
valent to Markov autormorphisms (0 < ¢ <3) only when the latter are of maximal

type.

Proor. For the definition of ““B-transformations” cf. [9], [6]. These transfor-
mations have information cocycles which are cohomologous to constants.

4. The Lebesgue class of information functions

The basic equation we have been investigating reads
Ia|T a?)=1(B|T'B)+1(a"|B)eT~1(a"|B)

when a, B are finite partitions with & D 8 and when a, 8 ¢ -boundedly code each
other (0 < ¢ <1). For some purposes it is clearly desirable to know what kind of
functions appear here; more specifically, to which L*? spaces do they belong?

The following result is a simple extension of an estimate due to Chung [2] for
the case p = 1.

ProposiTion 1. If a is a countable partition and if B, CB,C--- is an
increasing sequence of o-algebras then for 1 =p <o, p an integer,

P
[ sup{(I(a l%,,))” =p! z m(A)[l +|logm(A)+ - - +L|~Og_l’"pi'élt].
n A€a .
Proor. Let Ef={x:sup,|I(a|B.)F >t} then [sup,(I(a | B.))dm =
Jo m(ET)dt. Using Chung’s estimate for p =1, m(E!)=S.c.min(m(A),e™*),
we have

m(E?)=m(E}»)=< D, min(m(A),e™").

A€a

Hence
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a JO

f m(E?)dt = >, | min(m(A),e """ )dt
O AE

w©

= 3 (m@logmeary + [~ ear).

A€a llog m{A)P
=> (m(A)llogm(A)lﬁ-f pe"‘u”"du).
A€ flog m(A)]

If J, = [ogmeay e “du then a recurrence relation shows that

-1
pJ,,-.=p1e-“°”""’(1+llogm(A>t+ +@g(pﬂ—%)’J—)
Hence

r m(EP)dt = >, (mA |logm(A)f +pJ,-)

=A§ap!m(A) 1+]|logm(A)|+ --- +@g—’;§M .

CoroLLARY. If I(a) € L7 (X) then sup.I(a | B.)E L?(X). If a is finite then
sup.I(a |B.)E L*(X) for all 1=p <= and, in particular, I(a | T'a")€E
L?(X) forall 1=p <o,

The estimate is not good enough to imply that I(a/T '« ") is bounded and, in
fact, it can happen that I(a/T 'a”) is unbounded when « is finite, as the
following example shows.

Let py, ps, - - - be a sequence of positive numbers with 27, p, = 1, s = 27, ip; <
© and p,/pa+m — 1 for each m, e.g. p. =1/Kn’, K =237_,1/n>, Let T be the
Markov automorphism based on the stochastic matrix

P P2 Ps
1 0 0
0 1 0
0 0 1

The stationary initial probabilities are A, = 27_,p,/s. Let B8 be the canonical
(countable) partition B = [1],[2],-- - where [i] = {x: xo =i} and let a = [1],[1]".
T '[1]=[2]U[1,1] and hence [1]° U T7'(1] = [2]; T"}(2] = (2] U (1, 2] and hence
(1} U T '[2] =[3], etc. We conclude that " Z B = @, i.e. a = 8".

Since I(a/T 'a”)=1(a”/T " a”)= KB /T"'B")=I(B/T'B7)=1(B/T'B)
(B is the Markov canonical partition) it suffices to show that I(B/T7'B) is
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unbounded. It will then follow that the two set partition « has the property that
I(a/T'a”) is unbounded but belongs to L?(X) for all 1=p <«. But
I(a/T'a”)=I(B/T'B) has the value log(A./Ap.) on the cylinder [1,n]=
{x:x0=1,x,=n}and A./A,p. = (7=, p:}/p. = @ since pp+m/p. — 1 for each m.
We proceed now to an estimate for f I(a [ BYdm when1=p <wand q, 8 are
two ordered partitions with do(a, B)=d <(1—e*).
Let « =(A, Ay, -+, Ax) and B =(B,, B,, - -, By). Evidently

log m(A N B~2l”
m

f[(a | B)ydm = }_‘,, m(A; N B))

= 51+Sz,

where

S, = m(A NB,) ’

i#j

log m(A;NB))
m

3

S,=2 m(A;NB)

log m(A; N B[!l
- .

The function x:|logx|® has a maximum at e * (with value e *2°p”), is
increasing for 0 < x <e™® and decreasing for e * < x <1. Therefore

Si= D, m(A: N B,Y¥m(B;Ye " (2p)
i¥#jf

172 12
ser@py (3 mans)) (3 ma))
ik i¥#j
=ePQ2p)di-ki.
In order to estimate S, we shall use the function x {log x |, which has a maximum
at e (with value ¢ ®p”) and which increases in the range 0 <x <e™® and
decreases in the range e <x <1. Let

I={i:ﬂ%;f)&)>l—\/d>e“’} and

I'={1,2,--,k}-1I
For i € I', m(B;)— m(A; N B:)>Vdm(B:) and therefore

dz D> m(B)-m(A ﬂBi)>\/dm< U Bi),

ier el

ie. m(U.er B)< V.
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. Y|P R .
S.=3 m(A,-ﬂB.»)!logmA—;nn—B')’ +3 m(A NB) logﬂémili) ’

i€l i€l

= > m(B)(1-Vd)log(1-Vd)lP + 3 m(B)e™ -p

é(l—Vd)(l—_\%gere""p"\/d

=d"*(1- Vdy '+ e ?p°d:
=(1+ePpf)d:.
In conclusion we have
] I(a | B)Pdm = d*[1+ e ™p® + kie *(2p)].

For the next estimate we have to contend with the fact that x [log x |* is not
concave if p >1. (It is for p = 1.) In fact, x |[log x |° is concave in the interval
0<x <e @V and convex in the interval e *™’ < x < 1. The line y = m,(1-x)
meets y = x |log x [° tangentially at some point (xo, yo) With e » S x,< e *™", s0
that the function ¢,(x) = x{logx P (x = xo), ¢,(x)=m,(1 - x) (x = x,) is con-
cave in [0, 1], with maximum value e *p” at ™"

ProposiTiON 2. For p = 1, there exist constants K,, K, such that, if a is a
partition with k elements and if € is a sub-c-algebra with d(a, €)= (1-e"),
then

f I(a |€ydm = (K, + k*K})d(a | 6)
Proor. Let d{a } %)< d so that there exists B C€ with do(e, B) < d.

fl(a;%)"dm =f S m(A|€)log’m(A | €)dm
=[ 3 tma|€nam

= > E(¢,(m(A | %)) B)dm

= 3 i (m(A|B))dm

-3, 3 ron(m452)
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where
5-3 m (B¢, (LB ,’:(Q)B ) and $,= 5 m(B)s,(MADED ,;‘(Q)B ).

i#j

$i=3 m(A NB)m (Bf)%(ﬁ%ﬁm)l/2¢"<ﬂn%ﬁqd)

=S m(A: N B))m(B,)K.,

i#j
where K is the maximum of e *(2p)* and m,(1 - x)/x*in the range x Z e, i.e.
K,=max(e *(2py, me®”).

Therefore

1/2 1/2

sk (I m@ans)) (Tme))
i) i#j

ie. S\ =Kk

5:= 3, m(B)s, (ML) + 5 (B, (o)

ier iel

gz m(B.)d,(1 - Vd)+\Vdep®

=¢,(1-Vd)+e " Vd (whenl1-Vdze™)
=m,Vd+ep*Vd
= d¥m, + e "p®).

With K, = m, + e "p” we have { I(a | €)dm = (K, + k*K})d}, i.e. if d(a | €)=

(1-e77) then

f I(a |6ydm = (K, + k*K})d(a | €

5. Smooth partitions

Bowen [1] has shown that if T is a C* Anosov diffeomorphism preserving a
smooth probability then for arbitrary smooth partitions a there exist constants
C, 0 <A <1 such that if 8 is a finite measurable partition whose elements have

n+k

small enough diameters then d(ag, B2 )= C-A* forall n, k =0,1,2,---.
In particular small smooth partitions boundedly code each other.
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Tueorem 3. If T is an automorphism of the Lebesgue space (X, B, m) and if
a, B are finite partitions for which there exist C, 0 < A <1 such that d(a;, ") =
C-A*foralln k=0,1,--- then [(a /B7)E L?(X) forall 1=p <.

Proor. We shall only need d(a, T"B )= C -A* fork =0,1,2,---. We note
that I(a"/B)=I(a | B7)+ - +I(a/T"B")T" and therefore

”I(a"/ﬁﬂ)“p 5”1(‘1/37)”1) o +"I(a/T’lB»)“p
= 3 1| T8 ).

For fixed  and p we have seen that |I{a | T*87)|, = Kd(a | T*B")¥ for some
constant K when d(a | T*87)= CA* is small enough.

The first few terms of the series are finite by Proposition 1 and the remainder
are dominated by a series whose kth term is K - C¥A*. Hence the sequence
| I(«"/B7)|, is bounded (n =0,1,---).

The Martingale theorem ensures that I{(a" | 87) increases to [(a”~ l B Y. We
conclude that I(a” [ B7)° is integrable, i.e. I(a” , BE LX)

The import of this result is the following: Bowen proved that for the case of a
C? Anosov diffeomorphism which preserves a smooth probability, small smooth
partitions boundedly code each other. If we consider such a partition « then “to

some extent” « " is independent of «, i.€. @™ is almost canonical. Precisely, if B is
another small smooth partition then a™, 87 are closely related through a™ v 8~
in that a~ (or 87 has for its elements sets which (mod () are countable unions of
elements of ™ v B7. @~ would consist of sets which are finite (in fact bounded)
unions of elements of ™ v 87 if I{(a™/B7)€ L™(X)—we have proved the next
best thing. Corresponding to the close relationship between a ™ and 8~ we have
the close relationship between I{a/T 'a”) and I(8/T'B") given by

Ka/T'a )= 1(BIT'B)+feT~f

where all functions here belong to L?(X) for all 1 =p <,
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