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ABSTRACT 

We shall prove here that Bowen's bounded codes lead to a cocycle-coboundary 
equation which can be exploited in various ways: through central limit 
theorems, through the related information variance or through a certain group 
invariant. Another result which emerges is that it is impossible to boundedly 
code two Markov automorphisms when one is of maximal type and the other is 
not. The functions which appear in the above cited cocycle-coboundary 
equation may belong to various L p spaces. We devote a section to this problem. 
Finally we show that the information cocycle associated with small smooth 
partitions of a C 2 Anosov diffeomorphism preserving a smooth probability is, in 
a sense, canonical. 

O. Introduction 

In [1] Bowen in t roduced the idea of bounded  codes between finite parti t ions 

and between two measure  preserving t ransformat ions  (or s tat ionary finite state 

stochastic processes.) Using this concept  he was able to prove that small smooth  

parti t ions of C 2 Anosov  dif feomorphisms (preserving a smooth  probabil i ty)  are 

weak-Bernoull i .  He  was also able to show that certain Bernoull i  au tomorph isms  

with the same ent ropy cannot  boundedly  code each other.  (To do this the central  

limit theorem (or ra ther  the variance of the central  limiting distribution) was 

used as an invariant.)  A similar idea was used in [3] by Fellgett and the present  

au thor  to show that various measure  preserving t ransformat ions  are not 

"regular ly i somorphic" .  The  principal aid to the results of [3] was a cocycle- 

cobounda ry  equation.  

We shall prove here that bounde d  codes also lead to the same cocyle- 

coboundary  equat ion which can be exploited in various ways: th rough  central 

limit theorems,  through the closely related informat ion variance or  through a 

certain g roup  invariant.  A n o t h e r  result which emerges  is that it is impossible to 
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boundedly code two Markov automorphisms when one is of "maximal type" and 

the other is not. 

In the cocycle-coboundary equation it is of some importance to know to which 

L p spaces the various functions occurring belong. We devote a section to this 

problem. Finally we take up a result of Bowen's and show that small smooth 

partitions (for C 2 Anosov diffeomorphisms with a smooth probability) lead to 

canonical information cocyles in the sense that any two differ by a coboundary 
(of a function which lies in L p for all 1 =<p <oo). 

I. Bounded and ~-bounded codes 

Throughout (X, ~, m) will denote a (Lebesgue) probability space. The dis- 

tance between two finite ordered partitions with the same number of elements is 

given by 

k 

do(a,/3)= ~ m(A, AB,), a= A,,...,A~, [3= B,,...,Bk. 
i = l  

If a is a finite or countable partition we write & for the o--algebra generated by 

a. The (unsymmetric) distance between a finite partition a and a sub-g-algebra 

is defined as 

d(a, ~)  = inf{do(a, /3): /3 Cq~, a,/3 given any order}. 

If {A,}, {B,} i E 1 are subsets of a,/3 then 

m(  I,..J A,A I,_J B , )=  ~ re(A,)+ ~ re(B,)-2m( I,.J A, f3 I,_J B,) 
i ~ l  i lEI  i E I  i ~ l  i E l  i E l  

~ E  m ( A , ) + ~  rn(B,)- 2 ~ re(A, riB,) 

= E m(a, aB,). 
i E l  

From this it is easy to see that 

d(a, ~)  = sup{d(a', ~): &' C&}. 

Quite generally, for o--algebras ~,  qg contained in ~ we define 

d(s¢, (~) = sup{d(a, c¢): a Cd}  

= sup inf do(s,/3). 

If ,.~,, d2, d~ are three sub-o'-algebras then we have the following triangle 

inequality: 
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d(4,, 43) _-__ d(4,, 42) + d(42, 43). 

To see this let az, a2, a3 be finite ordered partitions with the same number of 

elements, in 4 , ,  d2, 43 respectively. The following inequalities are proved 

sequentially: 

do(a,, a3) =< do(a,, a2) + do(o~2, a3), 

d(a,, d3) =< do(a,, a2) + d(a2, d3) --< do(a,, a2) + d(42, 43), 

d(al, 43) = d(a~, 42) + d(4~, 43), 

d(4, ,  d3) _-< d(4, ,  d2) + d(42, d3). 

We note that 

d(4,  qg) = 0 ifandonly i f 4  Cg. 

Together with the triangle inequality this implies 

d(4, ,  43) -< d(42, 43) when 41 C42, 

d (4 , ,  d3) <= d (all, 42) when 42 C 43~ 

If 4 ,  ~ 4 (i.e. 4,  C42C . . .  and I , .J ,4.  generates 4 )  then 
d(4n, c~) ~ d(4,  q~). To see this, supposed < d (M, ~ ); then there exists a C 4  

such that for all/3 C ~  (with the same number of elements as a )  d < do(a, [3). 
Given d'  > 0 we can choose n large enough so that there will exist a '  C4n  with 

do(a, a') < d' and then 

do(a', /3 ) >= do(a,/3) - do(a, a') > d - d' for all/3 C %0. 

Hence d (4~, ~ )  => d - d',  and l i m , ~  d (4 . ,  ~ )  =-> d - d'. Since d'  is arbitrary we 

have l i m , ~ d ( 4 , ,  q¢)_-> d(4,  c¢). The reverse inequality is obvious. 

If 3' is a finite partition with 3' C ~ then 

d(M v ~, ~ )  = sup{d(a, ~):  a CM v ~2} 

-< sup{d(a v 3',c~): a CM} 

=sup{in fdo(aV3" , /3) :aC4}  (card a v 3' = card/3) 

<=sup{infdo(aVy, /3v3"):aC4} (card a = card/3) 

= sup [ inf do(a, /3 ): a C 4 } 

= d ( 4 ,  ~) 
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and obviously d(s¢, c~)< d(s¢ v 3), ~).  Hence d(s¢, ~ )  = d(~¢ v 3), ~).  By taking 

limits for a sequence 3;, ]' c~ we have 

d(s¢ v ~, ~ )  = d(s~, ~).  

Let T be an automorphism (invertible measure preserving transformation) of 

(X, ~,  m). If a,/3 are two finite partitions then /3 e-boundedly codes a, with 

respect to 7", if there exists k such that d(ag,,/3._~k) <_ e for all n = 0, 1,- • •. Here 

we use the notation/3'_k = V l=-kT-'/3 ; we shall also write/3- (more correctly/3-) 

for V~=oT-'[3 and/3r(/3r)  for VL_~T-'(3. 
If/3 e-boundedly codes a then 

d(a~,rk/3 - ) =  " -' < e  f o r n = 0 , 1 , . . .  

and hence d(a-,  rk/3-) <- e (for some k). 

According to Bowen [1], /3 boundedly codes a if for every e >0 ,  /3 e- 

boundedly codes a. 

If a is a finite partition and ~ is a sub-or-algebra then 

I(a - E xAlogm(A 
A ~ a  

and more generally if s~ is another sub-or-algebra the information of sg with 
respect to (or given) c~ is defined unambiguously (a.e.) as I(s~ i c~)= 

l i m ~ I ( a .  I c~) when ~. ~' s~. The entropy of s~ with respect to qff is 

H(sg i ~)  = f I(s~ i C~)dm. When ~ is the trivial or-algebra Y consisting of sets 

of measure zero and one we write I(s¢ ~N) = I(s¢), H(s~ IN) = H ( ~ ) .  

If a is a finite partition 

I t ( a )  = I t ( a - )=  I(a I T - 'a - )=  I (a-  I T- 'a-)  

is called the information cocycle of a or of a - .  (More generally if sg is a 

sub-or-algebra with T- ' s~Cs~ then I r ( s g ) =  I(s~j T - ' ~ )  is the information 

cocycle of sO.) 

The entropy of T with respect to a finite partition a is defined as h ( T , a ) =  

l i m ~ ( 1 / n ) ,  g(a?)) = f Ir (a)dm. 
The entropy of T is h (T) = s u p ,  h (T, a) ,  where the supremum is taken over all 

finite partitions a. If a is a finite generator (i.e. a is finite and d~r = ~ )  then 

h ( r ) =  h(T,a).  
We shall assume familiarity with the basic properties of information and 

entropy which may be found in [10]. The basic identity which will be used 

frequently is 
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v = 1 

2. The information cocycle 

LEMMA 1. If  ~ D ~ are sub-or-algebras such that d(C£, ~ )  < ~ then I (c~ I ~ )  is 

finite on a set of positive measure. More precisely if n satisfies d (q~, ~)/(1 - e-")  < ½ 
then 

m{x : I (~ l sC)>n}<=d(~ , s~  l + l _ e _ .  • 

PROOF. Let d(~ ,sg) / (1 -e -" )<½ and let /3Cfg. 

{x:I(/31~)>n}= U Bn{- logm(Bl , f f )>n}  
Be~O 

= U BN{m(BIsC)<e-"}  

C U A, D{m(B, Isg)<e-"} 
i 

U U (B,-A,)N{x:m(B,[~)<e-"} 
i 

where a = {A, } is chosen (and ordered) (a C M) so that Y~, m (A, AB,) =< d(~,  M). 

The latter union has measure at most E,m ( B , -  A,)=< d(~,  M) whereas 

A, f'l {x : re(B, J M ) <  e-"} = A, n {x: E(X~, - x,,, Is g) + 1 < e-"} 

CA, n{x:E(IxB,--XA,[ [ ~4) > 1 -  e-"}. 

Hence 

mA, D{x:m(B,  I ~ ) <  e-"} < 1 f = 1 -  e-" Z(x. ,aa,  lsg)dm 

and 

m U A,n{x :m(B,J .~)<e-" }  < 1 ~ d(~,e~_. ) 1 , = l - e - "  m(B'AA')<= <2" 

We conclude that 

Now let /3. C qg be a sequence of finite partitions with /3. 1' ~¢ then 
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( ) m{x:I (r~lM)>n}<=d(qg,  d )  l q  l _ e _  . < 1 .  

A real valued function of the fo rm fT  - f is called a coboundary (with respect  

to T);  fT  - f is the cobounda ry  of the function f. T w o  funct ions which differ by a 

cobounda ry  are said to be cohomologous. 

THEOREM 1.* Let r be an ergodic automorphism of (X, ~, m ). Ira, t8 are finite 
partitions such that 18 e-boundedly codes a for some 0 <-_e < ½ then I(a /18 ) is 
finite a.e. and Ir(a  v fl), Ir(18) are cohomologous. 

The elements of the partition 18 - consist (rood 0) of countable unions of elements 
of ,~-v18-. 

PROOF. The  last s t a tement  means  that  af ter  the delet ion of a suitable set of 

measu re  zero the descript ion is valid with no qualification; the s t a t ement  follows 

f rom the finiteness a.e. of I ( a - / 1 8 - )  = I (a -  v 18 /18 ) (cf. [10]). 

W e  have  seen that  d(a-,Tk18-)<=e for some  k_->O and hence  

d(a v Tk18 , Tkfl-)<--_ e. From L e m m a  1, I (a -  v 18-/Tk18 ) is finite on a set of 

posi t ive measure .  

W e  no te  that  

I(a-/18-)= I(T-ka-/18 )+ I (ak- ' /T-ka  - v 18 ) 

and since the lat ter  function is in tegrable  and I(T-%-/18-)  = I(a-/Tk18 )o T k -- 
I (a -  v [3-/T~[3-)o T ~ we see that  I(a - [/3-) is finite on a set of posit ive measure .  

I (a -  v [3 IT-'18-) = I(18 I T-'J3-)+ I(a-[18 ) 

= I ( a  v r - ' a - v f l - l r  '18 ) 

= I ( r  'a IT  ' 18 - )+I (a -v18-1T- 'a  v r '18-) 

= I ( a - 1 1 8 - ) o  T +  I ( a  v 18 I T - ' ( a -  v 18 )). 

1(18 I T '18 ) and I(a v 18 I T - ' a -  v T-'18-) are integrable  (in fact they belong to 

L p (X)  for  every 1 =< p < 2 ,  as we shall see) and there fore  I(a 1 18-) is finite on a 

T invar iant  set of posi t ive measure .  Since T is ergodic,  I(a 113-) is finite a.e. 

H e n c e  

1(181T '18 ) -  I (a  v181T- 'a  v T '18 )= I(a-118-)o T -  I(a I fl-) 

i.e. I r  (18), IT(a v 18) are cohomologous .  

' T h e  author  has subsequently discovered that here and in the remainder  of the paper the upper 
bound ~ may be replaced by 2. 
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COROLLARY. If T is ergodic and if a, [3 e-boundedly code each other (for some 
0 <= s < I) then their information cocycles are cohomologous. 

3 .  C e n t r a l  l i m i t s  a n d  o t h e r  i n v a r i a n t s  

We now show that the central limiting distribution of 

F , ( a ) = ~ n  (IT(a)+ . ' .  + I r (a )oT  "-~- nh(T,a)), 

if it exists, is independent of a for all those a which s-boundedly code each 

other (0 =< s < ½). 

The corresponding statement for 

Go(a) = ~7--n (I(a" ) - nh(T, a)) 

was proved by Bowen [1] for partitions which boundedly code each other. We 

include a proof of Bowen's result also• 

First note that if a,/3 e-boundedly code each other where 0 =< e < ½ then 

I T ( a ) +  "'" + Ir(a)° T"- ' - ( l r ( /3)+ "'" + Ir(fl)° r"- ' )= f °  T" - f 

for some finite valued f and (fT"-f)/O.--~O in measure whenever O.---~oo. 

Hence 
• 1 n i . - 1  

!l~rn~n ~0 Ir (a)o T ' =  liml,~ n ,=0 ~ lrr ([3) ° T' 

and f lT(a)dm =flr([3)dm. In other words h ( T , a ) =  h(T,[3). 
It is now clear that F , ( a ) - F . ( [ 3 ) = ( f T " - f ) / ~ / n  which tends to zero in 

measure• This is enough to ensure that m {x: F,(c~) > t} converges for all t if and 

only if m {x: F, ([3) > t} converges for all t. The limiting function will necessarily 

be the same. 
As for Bowen's result (when a, 13 e-boundedly code each other for all s > 0), 

let 0 < e < ½ ,  then 

!imm {x: I(a~)k/- / (/37~)> t }=  l imm {x: I(a~)-k/nl(/3"_~k)> t } 

_-<l imm x :  > t  

{x 11 (a~ f [3" :k )  } = l i m m  : ~ n  - > t  
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Since e can be chosen arbitrarily small 

l imm x: I(~° ° ) > t  =0. 

Interchanging a and/3 we see that ( I (~g) - I ( /3~ , ) ) /X/n-+0  in measure. This is 

enough to show that m { x : G . ( ~ ) > t }  converges for all t if and only if 

m {x: G~(/3)> t} converges for all t and that the limiting function will be the 

same. 

In many cases the limiting distribution of F~(~) is the same as the limiting 

distribution of G . ( a ) .  In fact the difference between F~(~) and G . ( ~ )  is 

o r  

~ n  (I(ot~,) - I(a,71 T-'"+'~a-)) 

1 
~im ~ [ ( I (a  ~,) - I(o~ g l T-'°+"a ~))1. 

On cylinders (xo ,"  ", x,+k) the quantity inside the square brackets is 

m (x,,, • •., x . , . . . ,  x.+k+,) /" 

When m (xo, • • ", x, )m (x. +,,... ,  x. +~ +,)/m (x0, • • ", x , , . . . ,  x, +k +,) is bounded from 

above and below, as in the case of finite state Markov chains, for example, it is 

clear that F . ( a ) -  G.(o  0 will converge to zero in measure. 

In any case it is clear that central limiting distributions are invariants of the 

relationships implied by e-bounded codes (0 --- e < ~) and bounded codes. In the 

most important cases central limiting distributions are Gaussian so that the only 

invariant to be extracted is the variance. In many cases (cf. [4]) this will be 

. . .  + IT(c~)oT"- ' -nh(T,a))=dm 

which was introduced in [3] as the information variance. (See [8] for a 

computation of this quantity when T is a finite state Markov chain and a is the 

canonical partition.) 

Fellgett and the author showed that the Meshalkin examples [5] of Bernoulli 
I 1 1 1 automorphisms based on (~,a,a,a) and (',~,~,-~,-~) were not "regularly isomor- 

phic"; Bowen proved that they do not boundedly code each other, o'2(T, a )  was 

(essentially) the invariant used in both cases. 

Another  invariant of the relation IT (a )  =/7- (/3) + ]7" - f is the group (cf. [7]) 
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A(T, a )  = {(a, b) E R x R : e 2,'("+b'~t'~ = F o T / F  

for some measurable F : X ~ K  = {z:lz I = 1}}. 

In other words if ~,/3 e-boundedly code each other (0= < e <~) then A(T,a)  = 

A(T,/3). A(T,a)  is readily computable when T is a finite state Markov 

automorphism and a is the canonical (state) partition, since functions F 

appearing in the definition of A(T, a )  are necessarily functions of one variable, 

i.e. F(x )  = F(x,,), where x,, is the zero co-ordinate.of x. 

Two automorphisms T,, T2 with preferred partitions a~, a.~ such that aa, a2 are 

generators (for T,, T2 respectively) are said to be e-bounded (bounded) equiva- 

lent or isomorphic if there is an isomorphism tk (cbT, = T2dp)  such that a,, fb- 'a,  

e-boundedly (boundedly) code each other. 

Clearly these relationships are particularly relevant to finite state stationary 

processes. Again using the A invariant, it is easy to show that the Meshalkin 

examples are not e-bounded equivalent (0_-< e < ½). Implicitly the work of [7] 

shows that no two of the Markov automorphisms 

are e-bounded equivalent (0_-<e < ' ) .  (The invariant o'2(T,a) is not sharp 

enough to distinguish these.) 

THEOREM 2. Let T,, T2 be Markov automorphisms (based on irreducible finite 

stochastic matrices) with T2 of "maximal  type". If  T~, T2 are e-bounded 

equivalent (0 <= e < ~) then T, is of maximal  type. More generally, if 7"2 is only 

assumed to be an automorphism whose information cocycle is cohomologous to a 

constant, then T~ is of maximal  type. 

PROOF. Let T be defined by the stochastic matrix P ={P(i , j )} .  T2 is of 

maximal type means that its stochastic matrix has the form 

/3 , 

where /3 is the maximum eigenvalue of a 0-1 irreducible matrix z and 

Ejr(i,j)Aj = flk~. 
In this case it is easy to see that IT2 is cohomologous to the constant log/3. 

More generally, supposing IT2 is cohomologous to log/3 and T,, T2 e-boundedly 

code each other ( 0 -  < e <½), then /7-, is cohomologous to log/3. But IT, is 

cohomologous to - log P(x,,, xO and therefore - log P(xo, x,) = log/3 + fTj - f 
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for some finite valued f. Since - log P(xo, x , ) -  log/3 is a function of the zero and 

first co-ordinates only it follows (cf, [7]) that e 2,''t is a function of the zero 

co-ordinate only for each real r. Hence f is a function of the zero co-ordinate 

only, i.e. f(x)  = f(xo). Consequently p(i, j) = (e-tO~//3 e-I(°)o'(i, j)  where 

I 1 when p(i,j)>O, 
or(/, j )  : [ 0 when p(i,j)=O. 

We see that p has the required form for T~ to be of maximal type since/3 must 

be the maximal eigenvalue of the matrix o'. 

COROLLARY. Natural extensions of "/3-transformations" are e-bounded equi- 
valent to Markov autormorphisms (0 <= e < ½) only when the latter are of maximal 
type. 

PROOF. For the definition of "/3-transformations" cf. [9], [6}. These transfor- 

mations have information cocycles which are cohomologous to constants. 

4. The Lebesgue class of information functions 

The basic equation we have been investigating reads 

I(o~ I T- '~-) = I(fl I T-' f l-)+ I (a-I f l  )o T -  I(o~-[fl-) 

when a,/3 are finite partitions with 6 D/3 and when a,/3 e-boundedly code each 

other (0 < e < -~). For some purposes it is clearly desirable to know what kind of 

functions appear here; more specifically, to which L" spaces do they belong? 

The following result is a simple extension of an estimate due to Chung [2] for 

the case p = 1. 

PROPOSITION 1. If a is a countable partition and if ~ C ~ 2 C  . ."  is an 
increasing sequence of a-algebras then ~or 1 <= p < 0% p an integer, 

f s u p ( I ( ~ l ~ , ) )  p<-_p! ~ m ( A ) [ l + ] l o g m ( A ) [ + . . . + / l ° g m ( A ) l p ]  , ~  p! • 

PaOOF. Let E f = { x : s u p .  I I ( o t {~ , ) [P> t}  then J ' s u p , ( I ( a l ~ ) ) P d m =  

fs m (Ef)dt. Using Chung's estimate for p = 1, m (E~) _--< Y~A~ min(m (A), e- '),  

we have 

m(E ; )=m(El , , , )<=  ~ min(m(A),e . . . . .  ). 
A ~ ,~  

Hence 
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f ~ m (EP, )d t  = ~'~ min(m (A),  e - ' "  )dt 
A ~ a  ) 

= ~ .  ( m ( A ) ' l o g m ( A ) [  p+ f,o~s..,A,,~ e-'"~dt). 

= ~ ( m ( A ) , l o g m ( A ) , +  f,[,.~(a,, pe- 'u p 'du) .  

then a recurrence relation shows that 

pJ,-, = p! e-"°s"(A" (1 + ]log m ( A  )t + " "  + ll°g m ( A  )t p-- ) 
• ( p  - 1 ) r  • 

If Jp = fl,~.,, m CA)I U Pe -"du 

Hence 

f ~ m(EP, )dt <= 
) A E a  

=E 
A E E ~  

(mA J log m (A )l p + pJ,_,) 

I ll°g m (A)IP I p ! m ( A )  l + / l o g m ( A ) ] + . - . +  p! . 

COROLLARY. I f  l ( ot ) E L P ( X ) then s u p . I ( a  I ~ . ) ~  L P ( X ). I ra  is finite then 
s u p . I ( a  I ~ . ) ~  LP(X)  for all I <=p <o~ and, in particular, I(oe I T - l a - ) E  
L~(X)  for all 1 <=p <oo. 

The estimate is not good enough to imply that I ( a / T - l a - )  is bounded and, in 

fact, it can happen that I (a /T-~a  -) is unbounded when a is finite, as the 

following example shows. 

Let p~, p2, • • • be a sequence of positive numbers with E~=z p, = 1, s = ET=, ip~ < 
oo and p./p.+.,--~l for each m, e .g .p .  = l / K n  3, K = E ] = t l / n  3. Let T be the 

Markov automorphism based on the stochastic matrix 

1 0 0 

0 1 0 

The stationary initial probabilities are ,L = E~-.p,/s. Let /3 be the canonical 

(countable) partition/3 = [1], [2] , . . .  where [ i l  = {x :xo  = i} and let a = [1], [1] c. 

T- ' [ l l  = [21 u [1,11 and hence [1] c U T- ' [ l l  = [21; T-2121 = [2] u [1, 21 and hence 

[1] c U T-'f2] = [3], etc. We conclude that a -  >-/3 >= a, i.e. o~- =/3- .  

Since I ( a l T - ' a - )  = I ( a - / T - ' a - )  = I(/3-1T-'/3-) = I( f l lT- ' /3-)  = I(/31T-'/3) 
(/3 is the Markov canonical partition) it suffices to show that I(/3/T-~/3) is 
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unbounded .  It will then follow that  the two set part i t ion a has the p rope r ty  that  

I(a/T-~a -) is u n b o u n d e d  but  belongs to LP(X) for  all l = < p < ~ .  But  

I(a/T-la-) = I(/3/T-'[3) has the value log(X./ ,~lp.)  on the cyl inder  [1, n] = 

{x : xo = 1, x~ = n} and h , , / ) t l p , ,  = (ET=,p,)/p, ~ oo since p,÷,,/p, --* 1 for  each m. 

W e  p roceed  now to an es t ima te  for  f I (a  [/3)Pdm when 1 =< p < oo and a, /3 are 

two o rde red  par t i t ions  with do(a,/3) = d < (1 - e-P) 2. 
Let  a = (A~, A 2 , ' "  ", Ak)  and /3 = (B,,  B 2 , "  ', B~). Evident ly  

f I(a Ifl)Pdm = ~ m(A, A B j ) l l o g  
z,I 

re(A, mN B i ) V ' 

= $1 + S2, 

where  

S~ = ~,,,j m (A~ N Bj) I log m(A,mt3 Bi)Ip ' 

I m(A, fqBi)i $2= ~ m(A, n Bj) log 
i m 

The  funct ion x~Ilogxl p has a m a x i m u m  at e -2p (with value e-~2PpP), is 

increasing for  0 < x < e -p and  decreas ing  for  e -p < x < 1. T h e r e f o r e  

S, <= ~ re(A, f3 Bj)~m(Bj)~e-P(2p) ~ 
i # i  

= m (B~) < e-P(2p) p m (A, (3 B i ,#J 

<= e-P (2p )t'd~ . k ~.. 

In o rder  to es t imate  S2 we shall use the funct ion x l log x [P, which has a m a x i m u m  

at e -p (with value e-Pp ~) and which increases  in the range  0 <  x < e -~ and 

decreases  in the range  e -p < x < 1. Le t  

m ( A ' A B i ) > I - X / d > e - ~ }  and I= i: m(Bj) 

I '={1 ,2 , . . . , k} - I .  

For  i ~ I ' ,  m (B~) - m (A~ gl B~ ) > X/dm (B~) and the re fore  

d>- let ~ m(B,) -m(Ai  N B i ) >  X/dm( i~,  B i ) ,  

i.e. m(I,.J~,B,)<X/d. 
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S 2  --~" 

< 

X/d . /  ~/d \o 
= ( I -  < ) ~ 1 - - - S ' ~  ) +e-'p"X/d 

= d"/2(1 - ~ d ) " - '  + e-"p"d ~ 

=< (1 + e-"p")d ½. 

In conclusion we have 

f l(a t[3)Pdm <= d~[1 

+ ~ . m ( A ,  NB,) l o g m ( A ~ ( ~ B ' )  ~ 
m i e l  m 

re(B,)(1 - V 'd ) l log  (1 - ~/d)l ° + ~ m(B,)e -p "pP 
i 61  i E l '  

+ e-ep . + k~e-P(2py]. 

For  the next  est imate we have to contend  with the fact that x [ log  x [ p is not 

concave if p > 1. (It is for  p = 1.) In fact, x I iog x ! P is concave in the interval 

O<x < e  -(p-° and convex in the interval e-(P- '<x < 1. The  line y = rap( l -x )  
meets  y = x [log x I p tangentially at some point  (Xo, yo) with e -p _< Xo <= e-(P-'), so 

that the function ¢ ~ ( x ) =  x t iogx  I ~ (x <-xo), ~b,(x)= rap(1 - x )  (x >-_ xo) is con- 

cave in [0,1], with max imum value e-Pp ~ at e -~. 

PROPOSITION 2. For p >= 1, there exist constants Kp, K'p such that, if a is a 
partition with k elements and if q¢ is a sub-or-algebra with d(a, c¢)<= ( 1 -  e-P) 2, 

then 

f I(a Ice)Pare <= + k~K'p)d(a Ice) ~. (K. 

PROOF. Let  d(alCC)<d so that there  exists /3 CC4 with do(a, 13)<d. 

J[ I(a l ~ f d m  = f a ~  ~ m(A  I C~)logPm(A l qg)dm 

<= f A~o ~' '~ (m (A [ ~¢))am 

= ~'~ E(&p(m(A I~)) l f l )dm 
A 6 a  

<_- ~. ~b,(m(A 113))dm 
A ~ a  

= E E m,~,. , .p\ m(B)  ] 
A ~ o t  B~13 

=S,+$2,  
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where 

Sl ~" 2 m(Bi)ckp(m(A' f) B,) ) /m(Ai N B,) \  ,~,, m(Bj) and $2 = ~, m(B')~b~/ m(B,) }" 

~, ~( re(B1 ) ~,n. {m(A, NBO ~ 
S l = ~  m(A'fqBi) m(Bj)~ m(A, NB,)] c ~  m(Bj) J 

< ~ m(A, A B,)~m(B,)~K~, 

where K~ is the maximum of e-P (2p)P and mp (1 - x)/x ~ in the range x => e-e, i.e. 

Therefore 

i.e. $1 < ' "~ =K,k  d . 

K~ =< max (e -p (2p)P, rope m). 

S, <= Kp m(A, N B,) m(Bi) 
izH 

S2 = ~ m(B~)&p( m(A~ f3 B,) ) / m(A, f~ B~) ) 
,~, m(B,) + ,e,, ~ m ( B , ) & p [  re ( B , )  

_-< ~ m (B,)&.(1 - X/d)+ x/de-Pp" 
i E l  

=< &.(1 - X/d)+ e-Pp e X/d (when 1 - x /d  _>- e -p) 

<= meX/d + e-~'p p X/d 

= d~(mp + e epe). 

With Kp = m e + e-ep p we have f I(a I ~)dm <= (Ke + k~K'p)d ~, i.e. if d ( a  I c~)=< 
(1 - e-P)z then 

f I(ot c~)Pdm <-_ (K e I t + k~K'p)d(a ~)~. 

5. S m o o t h  part i t ions  

Bowen [1] has shown that if T is a C 2 Anosov ditteomorphism preserving a 

smooth probability then for arbitrary smooth partitions a there exist constants 

C, 0 < A < 1 such that if/3 is a finite measurable partition whose elements have 

small enough diameters then d(a~,/3~k) =< C • A k for all n, k = 0, 1, 2,. • • 

In particular small smooth partitions boundedly code each other. 
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THEOREM 3. I f  T is an automorphism of the Lebesgue space (X, ~,  m)  and if 
a,/3 are finite partitions for which there exist C, 0 < A < 1 such that d(ot~, fl~_~k) 6 

C.  A k for all n, k = 0 , 1 , . . .  then I(a / / 3 - ) ~ L P ( X )  for all l <-_p <oo. 

PROOF. We shall only need d (a, Tkfl-) _--< C • A k for k = 0, 1,2," • •. We note 

that I(a"//3-)  = l(ct l /3-)+ . . .  + I (a /T~/3-)T  ~ and therefore 

IIx(  l/3-)llp IIz( //3-)llp + . . .  + IJt(, /Tn/3-)llp 

-< III(,  J r /3-)llp. 
k = 0  

For fixed a and p we have seen that IlI(ct I T'/3-)llp < Kd(a  I Tk/3-) ~p for some 

constant K when d ( a  I Tk/3-) < CAk is small enough. 

The first few terms of the series are finite by Proposition 1 and the remainder  

are dominated by a series whose k th term is K • C~PA k/2p. Hence the sequence 

Ill(Ot"//3-)llp iS bounded (n = 0, 1 , . . . ) .  

The Martingale theorem ensures that I ( a  ~ I/3-) increases to [(a-I/3-)~. We 

conclude that I (a - I /3 - )  p is integrable, i.e. I ( a - I / 3 - ) E  LP(X).  

The import  of this result is the following: Bowen proved that for the case of a 

C 2 Anosov diffeomorphism which preserves a smooth probability, small smooth 

partitions boundedly code each other. If we consider such a partition a then " to  

some extent"  a - is independent  of o¢ i.e. a -  is almost canonical. Precisely, if/3 is 

another  small smooth partition then a - , / 3 -  are closely related through a -  v 13 

in that a - (or /3-)  has for its e lements  sets which (mod 0) are countable unions of 

elements of a -  v /3 -  a would consist of sets which are finite (in fact bounded) 

unions of elements  of a -  v /3-  if I(a-/ /3-)  E L ~ ( X ) - - w e  have proved the next 

best thing. Corresponding to the close relationship between a -  and /3 -  we have 

the close relationship between I (ot /T- l~ -) and I(/3/T-~/3 ) given by 

I (o t /T - 'a - )  = I(fl/T-~/3 -) + [o T - f 

where all functions here belong to LP(X)  for all 1 =<p < ~. 
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